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Abstract
A quantum channel is derived for continuous variable teleportation which
is performed by means of an arbitrary entangled state and the standard
protocol. When a Gaussian entangled state such as a two-mode squeezed-
vacuum state is used, the continuous variable teleportation is equivalent to the
thermalizing quantum channel. Continuous variable quantum dense coding is
also considered.

PACS numbers: 03.67.−a, 03.65.Ud, 03.65.Ta

Quantum information processing attracts much attention in quantum physics and information
science [1–3], which gives a deeper insight into the principles of quantum mechanics and
provides novel communication systems such as quantum teleportation and quantum dense
coding. Quantum teleportation transmits an unknown quantum state by means of classical
communication and quantum entanglement [4]. Quantum dense coding sends classical
information via a quantum channel and quantum entanglement [5]. Bowen and Bose have
recently shown that a finite-dimensional quantum teleportation with the standard protocol is
equivalent to a generalized depolarizing quantum channel [6]. In this letter, we generalize
this result to infinite-dimensional quantum teleportation and show that continuous variable
quantum teleportation with the standard protocol is equivalent to a generalized thermalizing
channel.

We explain the standard protocol of continuous variable quantum teleportation [7, 8].
Alice and Bob first share an entangled quantum system in a quantum state ŴAB which is
arbitrary though a two-mode squeezed-vacuum state is usually used, where A and B stand for
the quantum system at Alice and Bob’s sides. When Alice is given a quantum state ρ̂Q to be
teleported to Bob, she performs the simultaneous measurement of position and momentum of
the compound quantum system Q +A. Then Alice sends the measurement outcome (x, p) to
Bob via a classical communication channel. After receiving the measurement outcome, Bob
applies the unitary transformation described by the displacement operator D̂(x, p) = ei(px̂−xp̂)
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to the system B. Bob finally obtains the quantum state ρ̂B which is, in an ideal case, identical
to the quantum state ρ̂Q to be teleported.

The main result of this letter is that the completely positive map L̂ which describes the
continuous variable teleportation by means of an arbitrary entangled state and the standard
protocol is given by

L̂ρ̂ =
∫ ∞

−∞
dx

∫ ∞

−∞
dpP(x, p)D̂(x, p)ρ̂D̂†(x, p) (1)

with

P(x, p) = 〈�AB |[1̂A ⊗ D̂B(x, p)]†ŴAB [1̂A ⊗ D̂B(x, p)]|�AB〉 (2)

where |�AB〉 is a completely entangled state of continuous variable,

|�AB〉 = 1√
2π

∫ ∞

−∞
dx|xA〉 ⊗ |xB〉 (3)

which satisfies TrA|�AB〉〈�AB | = (1/2π)1̂B and TrB |�AB〉〈�AB | = (1/2π)1̂A. In this state,
the systems A and B have the same values of position and the opposite values of momentum,
that is (x̂A − x̂B)|�AB〉 = (p̂A + p̂B)|�AB〉 = 0. When P(x, p) = P(x)P (p) and P(x) is
a Gaussian function of x, the completely positive map L̂ becomes the thermalizing quantum
channel. Hence we refer to the completely positive map L̂ as a generalized thermalizing
quantum channel. In a discrete quantum teleportation of an N-dimensional Hilbert space, this
corresponds to a generalized depolarizing quantum channel obtained by Bowen and Bose [6].
When a pure state ρ̂ = |ψ〉〈ψ| is teleported, the fidelity Fψ is calculated by the formula

Fψ =
∫ ∞

−∞
dx

∫ ∞

−∞
dpP(x, p)|〈ψ|D̂(x, p)|ψ〉|2. (4)

The property of the simultaneous measurement of position and momentum is essential
for deriving the completely positive map L̂. The simultaneous measurement which yields
the measurement outcome (x, p) is described by a projection operator x̂AB(x, p) =
|�AB(x, p)〉〈�AB(x, p)|, where |�AB(x, p)〉 is given by

|�AB(x, p)〉 = 1√
2π

∫ ∞

−∞
dy|xA + yA〉 ⊗ |yB〉 eipy

= [D̂A(x, p)⊗ 1̂B]|�AB〉 e− 1
2 ipx

= [1̂A ⊗ D̂B(−x, p)]|�AB〉 e− 1
2 ipx (5)

with

D̂(x, p) = exp[ i(px̂ − xp̂)] = exp(αâ† − αâ) (6)

and â = (x̂ + ip̂)/
√

2 and α = (x + ip)/
√

2. The state vector |�AB(x, p)〉 is the simultaneous
eigenstate of position-difference operator x̂A − x̂B and momentum-sum operator p̂A + p̂B ,
which satisfies the relations

〈�AB(x, p)|�AB(x ′, p′)〉 = δ(x − x ′)δ(p − p′) (7)
∫ ∞

−∞
dx

∫ ∞

−∞
dp|�AB(x, p)〉〈�AB(x, p)| = 1̂A ⊗ 1̂B. (8)

For quantum optical systems, the simultaneous measurement of position and momentum is
implemented by a heterodyne detection [9].

Let us now derive the main result given by equations (1)–(3). Suppose that Alice and
Bob share an arbitrary entangled state ŴAB and Alice has a quantum state ρ̂Q which is to be
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teleported to Bob. The total quantum state of Alice and Bob is given by ρ̂Q ⊗ ŴAB . Alice
performs the simultaneous measurement of position and momentum of the compound system
Q +A, described by the projection operator x̂QA(x, p), and informs Bob of the measurement
outcome (x, p). Then Bob applies the unitary operator D̂B(x, p) to the system B and finally
obtains the quantum state

ρ̂B(x, p) = D̂B(x, p){TrQA[(x̂QA(x, p)⊗ 1̂B)(ρ̂Q ⊗ ŴAB)]}D̂B†(x, p)

TrQAB [(x̂QA(x, p)⊗ 1̂B)(ρ̂Q ⊗ ŴAB)]
(9)

with probability

P(x, p) = TrQAB [(x̂QA(x, p)⊗ 1̂B)(ρ̂Q ⊗ ŴAB)]. (10)

In deriving equation (9), we have used the state-reduction formula [10–12]. Hence the
teleported quantum state ρ̂Bout of Bob is given, in average, by

ρ̂Bout =
∫ ∞

−∞
dx

∫ ∞

−∞
dpD̂B(x, p){TrQA[(x̂QA(x, p)⊗ 1̂B)(ρ̂Q ⊗ ŴAB)]}D̂B†(x, p) (11)

which determines the completely positive map L̂ of the continuous variable teleportation by
means of an arbitrary entangled state and the standard protocol.

To obtain the completely positive map L̂ from equation (11), we expand the entangled
quantum state ŴAB in terms of |�AB(x, p)〉 as

ŴAB =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
du

∫ ∞

−∞
dvFW (x, u; y, v)|�AB(x, u)〉〈�AB(y, v)| (12)

where we set FW(x, u; y, v) = 〈�AB(x, u)|ŴAB |�AB(y, v)〉. Note that the state vector
|�AB(x, p)〉 satisfies the relation

〈�AB(x, u)|�BC(y, v)〉 = 1

2π

∫ ∞

−∞
dz|zC − yC〉〈zA + xA| e−iuz+iv(z−y). (13)

Substituting these equations into equation (11) and using |x + y〉 = e−iyp̂ |x〉, after some
calculation, we obtain

ρ̂Bout =
∫ ∞

−∞
dx

∫ ∞

−∞
dpFW(x, p; x, p)D̂B(−x, p)ρ̂BD̂B†(−x, p) (14)

where ρ̂B is the quantum state of the system B, which is identical to that described by ρ̂Q.
Using equation (5), we can arrive at the result given by equations (1)–(3). Therefore, we have
found that the continuous variable teleportation by means of an arbitrary entangled state and
the standard protocol is equivalent to the generalized thermalizing quantum channel.

The continuous variable teleportation is usually performed by means of a two-mode
squeezed-vacuum state

∣∣�AB
SV

〉 = er(â
†b̂†−âb̂)|0A, 0B〉 [7, 8]. In this case, calculating

P(x, p) = ∣∣〈�AB
SV

∣∣�AB(x, p)〉∣∣2
we obtain

L̂ρ̂ = 1

2πn̄r

∫ ∞

−∞
dx

∫ ∞

−∞
dp exp

(
−x

2 + p2

2n̄r

)
D̂(x, p)ρ̂D̂†(x, p) (15)

where n̄r = e−2r and r is the squeezing parameter of the two-mode squeezed-vacuum state∣∣�AB
SV

〉
. The completely positive map L̂ given by equation (15) is equivalent to the transfer-

operator representation of the continuous variable teleportation [13]. When we denote the
Glauber–Sudarshan P-function of the quantum state ρ̂ as P(α), equation (15) can be rewritten
as

L̂ρ̂ =
∫

d2α

π
P(α)D̂(α)ρ̂ thD̂

†(α) (16)
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where ρ̂th is the thermal state

ρ̂th = 1

1 + n̄r

∞∑
n=0

(
n̄r

1 + n̄r

)n
|n〉〈n|. (17)

This result explicitly shows that the continuous variable teleportation by means of the two-
mode squeezed-vacuum state is nothing but the thermalizing quantum channel. When the
two-mode squeezed-vacuum state is shared through a noisy quantum channel, the parameter
n̄r = e−2r as appeared in equation (15) is replaced with n̄r = 1 − (1 − e−2r )T [14–16], where
T stands for the transmission coefficient of the noisy quantum channel.

We next consider the continuous variable quantum dense coding by means of an arbitrary
entangled state and the standard protocol in which Alice applies the unitary operator D̂(x, p)
to encode some classical information and Bob performs the simultaneous measurement of
position and momentum to extract the information [17–20]. Suppose that Alice and Bob share
an arbitrary entangled quantum state ŴAB to transmit classical information via the continuous
variable quantum dense coding. When Alice applies the unitary operator D̂(x, p) to her
system and sends it to Bob, his quantum state ŴAB(x, p) is given by

ŴAB(x, p) =
∫ ∞

−∞
dy

∫ ∞

−∞
dz

∫ ∞

−∞
du

∫ ∞

−∞
dvFW (y, u; z, v)

× |�AB(x + y, p + u)〉〈�AB(x + z, p + v)|. (18)

Thus, the conditional probability (the channel matrix of the quantum dense coding)
P(x ′, p′|x, p) that Bob obtains the measurement outcome (x ′, p′) when Alice encodes (x, p)
is calculated to be

P(x ′, p′|x, p) = 〈�AB(x ′ − x, p′ − p)|ŴAB |�AB(x ′ − x, p′ − p)〉
= FW(x

′ − x, p′ − p; x ′ − x, p′ − p)

= P(x − x ′, p′ − p) (19)

where P(x, p) is given by equation (2). When ŴAB is the two-mode squeezed-vacuum state,
we obtain

P(x ′, p′|x, p) = 1

2πn̄r
exp

[
− (x

′ − x)2 + (p′ − p)2

2n̄r

]
. (20)

In the strong squeezing limit (r � 1), the channel matrix P(x ′, p′|x, p) is approximated as
δ(x ′ − x)δ(p′ − p) and thus the continuous variable quantum dense coding can transmit an
amount of classical information twice that without quantum entanglement [18]. When the
two-mode squeezed-vacuum state is sent through a noisy quantum channel, the parameter
n̄r = e−2r as appeared in equation (20) is replaced with n̄r = 1 − (1 − e−2r )T [19, 20].

In summary, we have shown that the continuous variable quantum teleportation by
means of an arbitrary entangled quantum state and the standard protocol is equivalent to
the generalized thermalizing quantum channel. This is a continuous version of the result
obtained by Bowen and Bose [6], in which they have shown that the discrete (the finite-
dimensional) quantum teleportation with the standard protocol is equivalent to the generalized
depolarizing quantum channel. In particular, when a two-mode squeezed-vacuum state is
used as an entanglement resource, the continuous variable quantum teleportation becomes the
thermalizing channel in which the number of thermal photons is given by n̄r = e−2r . The
continuous variable quantum dense coding by means of an arbitrary entangled state and the
standard protocol has also been considered. As long as the standard protocol is applied, not
only the continuous variable quantum teleportation but also the continuous variable quantum
dense coding is completely determined by the function P(x, p) given by equation (2).
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